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Abstract
We calculate analytically a statistical average of trajectories of an approximate
expectation-maximization (EM) algorithm with generalized belief propagation
(GBP) and a Gaussian graphical model for the estimation of hyperparameters
from observable data in probabilistic image processing. A statistical average
with respect to observed data corresponds to a configuration average for
the random-field Ising model in spin glass theory. In the present paper,
hyperparameters which correspond to interactions and external fields of spin
systems are estimated by an approximate EM algorithm. A practical algorithm
is described for gray-level image restoration based on a Gaussian graphical
model and GBP. The GBP approach corresponds to the cluster variation method
in statistical mechanics. Our main result in the present paper is to obtain the
statistical average of the trajectory in the approximate EM algorithm by using
loopy belief propagation and GBP with respect to degraded images generated
from a probability density function with true values of hyperparameters. The
statistical average of the trajectory can be expressed in terms of recursion
formulas derived from some analytical calculations.

PACS numbers: 02.50.−r, 02.50.Cw, 02.50.Tt, 05.20.−y, 05.50.+q, 75.10.Nr,
87.19.Dd, 89.70.+c

1. Introduction

Belief propagation and its related algorithms have been used to carry out statistical inference
for computational models on an arbitrary graph with a large number of nodes and there
are links to work in computer science [1–4]. In particular it is known that loopy belief
propagation (LBP) and generalized belief propagation (GBP) are equivalent respectively to
Bethe approximations and the cluster variation method in statistical mechanics [5–9]. One of
the successful applications is to probabilistic image processing [10–12].
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One of the difficult problems in probabilistic image processing is how to estimate
hyperparameters from observed data, for example in the form of degraded images in the
context of image restoration. One familiar statistical approach is to maximize a marginal
likelihood. By using LBP, we can construct approximate frameworks for estimating the
hyperparameters from the observed data alone [11]. In probabilistic image processing
based on Gaussian graphical models, Tanaka et al [13] have investigated the accuracy of
hyperparameter estimation by comparing approximate values of the marginal likelihood for
LBP with the exact values. Tanaka et al [14] have investigated the accuracy of hyperparameter
estimation by comparing approximate values of the marginal likelihood for the generalized
belief propagation with the exact values, numerically.

As another statistical-mechanical approach to computer science, we have statistical
performance estimation by using an aspect of spin glass theory [15]. Statistical performance
estimation corresponds to a configuration average for random spin systems. A statistical
performance estimation scheme has been derived by applying the replica method to image
restoration, although the computational model has been defined on a complete graph [18].
It is expected that they have similar properties to those of approaches to image restoration
on a square lattice. One familiar statistical technique for estimating hyperparameters is
the expectation-maximization (EM) algorithm [4]. A statistical average of trajectories
corresponding to the EM algorithm with respect to observed data has been investigated for some
probabilistic computational models on a complete graph by using the replica method [19, 20].

Some authors have investigated the accuracy of certain statistical quantities and the
convergence of algorithms in LBP [21–25]. However, statistical averages of trajectories of
approximate EM algorithms in LBP and GBP have not been investigated yet.

The main purpose of the present paper is to calculate the statistical average of the
trajectories for hyperparameter estimation by using LBP and GBP analytically and to compare
the statistical average with that obtained by exact calculation. We obtain the statistical
average of the trajectory in the approximate EM algorithm by using LBP and GBP with
respect to degraded images generating from a probability density function with true values
of hyperparameters. The statistical average of the trajectory can be expressed in terms
of recursion formulas derived from some analytical calculations as our main results in the
present paper. In section 2, we explain the basic framework of the EM algorithm for Bayesian
image analysis. In section 3, we present an EM algorithm for image processing based on a
Gaussian graphical model, making use of the multi-dimensional Gaussian integral formula. In
section 4, we present the EM algorithm for GBP in the Gaussian graphical model and describe
some numerical experiments. In section 5, we derive the statistical average of the trajectories
of the EM algorithm in the Gaussian graphical model on a square lattice and compare the
results with those based on the exact calculations given in section 3. In section 6, we provide
some concluding remarks.

2. EM algorithm in probabilistic image processing

In this section, we present a framework for probabilistic image restoration for gray-level
images by using a Gaussian graphical model as an a priori probabilistic model in the Bayesian
framework. We also develop the EM algorithm for hyperparameter estimation in probabilistic
image restoration.

In computer vision, images are typically defined on a set of pixels arranged on a rectangular
lattice � ≡ {i|i = 1, 2, . . . , |�|} in the two-dimensional xy-plane, where |�| is the total
number of pixels3. The spatial coordinate vector of the ith pixel is denoted by ri . We consider

3 We denote the number of whole elements belonging to a set A by |A|.
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that there is a link ij between every nearest-neighbor pair of pixels i and j , and the set of all
the links is denoted by N .

At each pixel, the intensity of light is represented by an integer or a real number. Here,
we consider an image on a rectangular lattice � such that the intensity at each pixel takes
a real value in the range (−∞, +∞). A monochrome digital image is then expressed as a
two-dimensional light intensity function fi , where fi is proportional to the brightness of the
image at pixel i. The rectangular lattice � is assumed to have periodic boundary conditions in
both x- and y-directions.

The intensities at pixel i in the original image and the degraded image are regarded as
random variables denoted by Fi and Gi , respectively, and the random fields of intensities
in the original image and the degraded image are represented by F ≡ (F1, F2, . . . , F|�|)T

and G ≡ (G1,G2, . . . ,G|�|)T, respectively. The actual original image and the degraded
image actually observed are denoted by f = (f1, f2, . . . , f|�|)T and g = (g1, g2, . . . , g|�|)T,
respectively.

In the present paper, it is assumed that the degraded image g is generated from the original
image f by the addition of white Gaussian noise with mean 0 and variance σ 2, so that

P(G = g|F = f , σ ) ≡
(

1

2πσ 2

) |�|
2 ∏

i∈�

exp

(
− 1

2σ 2
(fi − gi)

2

)
. (1)

Moreover, the a priori probability density for the original image is assumed to be

P(F = f |α) ≡ 1

ZPR(α)

∏
ij∈N

exp

(
−1

2
α(fi − fj )

2

)
, (2)

which represents local spatial correlation among the pixel intensities. The denominatorZPR(α)

in equation (2) is a normalization constant. By substituting equations (1) and (2) into the Bayes
formula, we obtain

P(F = f |G = g, α, σ ) = P(G = g|F = f , σ )P(F = f |α)∫
P(G = g|F = z, σ )P(F = z|α) dz

= 1

ZPO(g, α, σ )
exp

− 1

2σ 2

∑
i∈�

(fi − gi)
2 − 1

2
α

∑
ij∈N

(fi − fj )
2

 ,

(3)

where
∫

dz ≡ ∫ +∞
−∞ dz1

∫ +∞
−∞ dz2· · ·

∫ +∞
−∞ dz|�|. The denominator ZPO(g, α, σ ) in equation (3)

is a normalization constant.
In the maximum likelihood approach, values for the hyperparameters α and σ are

determined so as to maximize the marginal likelihood P(G = g|α, σ ), where

P(G = g|α, σ ) ≡
∫

P(G = g|F = z, σ )P(F = z|α) dz. (4)

We denote these maximizers by α̂ and σ̂ :

(̂α, σ̂ ) = arg max
(α,σ )

P(G = g|α, σ ). (5)

Given the estimates α̂ and σ̂ , the restored image f̂ = (f̂ 1, f̂ 2, . . . , f̂ |�|)T is determined by

f̂ = h(g, α̂, σ̂ ) ≡
∫

zP(F = z|G = g, α̂, σ̂ ) dz. (6)

This way of producing a restored image is called maximum posterior mean estimation. In this
case, it also provides the ‘mode’ because of the Gaussian nature of the posterior.
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The maximization of the marginal likelihood in equation (5) can be achieved by means
of the EM algorithm. If we define

Q(α, σ |α′, σ ′, g) ≡
∫

P(F = z|G = g, α′, σ ′) ln(P(F = z,G = g|α, σ )) dz, (7)

the EM algorithm is summarized as follows.

EM algorithm

Step 1: Set (α(0), σ (0)) and t ← 0.
Step 2: Iterate the following EM step until convergence:

(α(t + 1), σ (t + 1)) ← arg max
(x,y)

Q(x, y|α(t), σ (t), g) (8)

and t ← t + 1.
The Q-function has the following relationship with the marginal likelihood:[

∂

∂θ
Q(x, y|α, σ, g)

]
x=α,y=σ

=
[

∂

∂θ
ln P(G = g|x, y)

]
x=α,y=σ

, (θ = x, y). (9)

It then follows that the above EM algorithm leads to one of the extreme points of the marginal
likelihood P(G = g|α, σ ) with respect to (α, σ ). Equation (8) can be replaced by the
update rule in which (α(t + 1), σ (t + 1)) is determined so as to be the extreme point of
Q(x, y|α(t), σ (t), g) with respect to x and y, i.e. such that[

∂

∂θ
Q(x, y|α(t), σ (t), g)

]
x=α(t+1),y=σ(t+1)

= 0, (θ = x, y). (10)

By substituting equations (1) and (2) into equation (10) with equation (7), we can reduce the
update rule in the EM algorithm to the following equations:∑

ij∈N
〈(Fi − Fj )

2|α(t + 1)〉 =
∑
ij∈N

〈(Fi − Fj )
2|g, α(t), σ (t)〉, (11)

σ(t + 1)2 = 1

|�|
∑
i∈�

〈(Fi − gi)
2|g, α(t), σ (t)〉. (12)

Here 〈(Fi − Fj )
2|g, α(t), σ (t)〉 and 〈(Fi − gi)

2|g, α(t), σ (t)〉 are the expectation values of
(Fi − Fj )

2 and (Fi − gi)
2 with respect to P(F = f |G = g, α, σ ), respectively, while

〈(Fi −Fj )
2|α(t +1)〉 is the expectation value of (Fi −Fj )

2 with respect to P(F = f |α(t +1)).
Let us suppose that degraded images g are generated according to P(G = g|α∗, σ ∗) for

the true values of hyperparameters α = α∗ and σ = σ ∗. Now we introduce the statistical
average of the Q-function, defined by

Q(α, σ |α(t), σ (t)) ≡
∫

Q(α, σ |α(t), σ (t), g)P(G = g|α∗, σ ∗) dg. (13)

The statistical average of the EM algorithm (8) can be written as

(α(t + 1), σ (t + 1)) ← arg max
α,σ

Q(α, σ |α(t), σ (t)). (14)

By differentiating Q(α, σ |α(t), σ (t)) with respect to α and σ , we can reduce equation (14) to∑
ij∈N

〈(Fi − Fj )
2|α(t + 1)〉 =

∑
ij∈N

∫
〈(Fi − Fj )

2|g, α(t), σ (t)〉P(G = g|α∗, σ ∗) dg, (15)

σ(t + 1)2 = 1

|�|
∑
i∈�

∫
〈(Fi − gi)

2|g, α(t), σ (t)〉P(G = g|α∗, σ ∗) dg. (16)
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Equations (15) and (16) provide the statistical average of the trajectories in the EM
algorithm with respect to the probability density function P(G = g|α∗, σ ∗). For example,
suppose that we generate 20 degraded images g(1), g(2), . . . , g(20) from P(G = g|α∗, σ ∗) and
calculate the sequence {(α(k)(t), σ (k)(t))|t = 0, 1, 2, . . .} for each degraded image g(k). Then
we can estimate the statistical average of the trajectory in the EM algorithm by the sample
average of the sequences obtained by applying the EM algorithm to each degraded image g(k).
Equations (15) and (16) can be regarded as update rules for calculating the statistical average
of the EM trajectory with respect to the infinite number of degraded images generated from
the probability density function P(G = g|α∗, σ ∗).

3. Exact EM algorithm for Gaussian graphical model

Some statistical quantities associated with the Gaussian graphical model mentioned in the
previous section can be calculated exactly by means of the multi-dimensional Gaussian integral
formula. In this section, we give an explicit algorithm for calculating the statistical average
of the trajectory (α(t), σ (t)) in the EM algorithm, as defined in equations (15) and (16). The
basic scheme underlying the present section has been given in [11, 26].

By using the multi-dimensional Gaussian integral formula, we obtain the exact expression
of the restored image f̂ = h(g, α̂, σ̂ ) as

f̂ = h(g, α̂, σ̂ ) = (I + α̂σ̂ 2C)−1g. (17)

Here I is the |�| × |�| unit matrix and C is the |�| × |�| matrix whose (i, j)-component
〈i|C|j 〉 is defined by

〈i|C|j 〉 ≡


4 (i = j)

−1 (ij ∈ N )

0 (otherwise),
(i, j ∈ �). (18)

Furthermore, the expectation values 〈(Fi−Fj )
2|α(t +1)〉,∑ij∈N 〈(Fi−Fj )

2|g, α(t), σ (t)〉
and 〈(Fi − gi)

2|g, α(t), σ (t)〉 can be derived in closed form in terms of the matrices I and C
and the vector g by using the multi-dimensional Gaussian integral formula. As a result, the
update rules (11) and (12) in the EM algorithm can be written as

α(t + 1)−1 = 1

|�|Tr(σ (t)2C(I + α(t)σ (t)2C)−1) +
1

|�|g
TC(I + α(t)σ (t)2C)−1g, (19)

σ(t + 1)2 = 1

|�|Tr(σ (t)2(I + α(t)σ (t)2C)−1) +
1

|�|g
Tα(t)2σ(t)4(C(I + α(t)σ (t)2C)−1)2g.

(20)

If we average the right-hand sides of equations (19) and (20) with respect to the probability
density function P(G = g|α∗, σ ∗), the update rules (15) and (16) are as follows:

α(t + 1)−1 = 1

|�|Tr(σ (t)2C(I + α(t)σ (t)2C)−1)

− 1

|�|Tr

(
1

α∗

)
(I + α∗σ ∗2C)((I + α(t)σ (t)2C)−1)2, (21)

σ(t + 1)2 = 1

|�|Tr(σ (t)2(I + α(t)σ (t)2C)−1)

− 1

|�|Tr

(
α(t)2σ(t)4

α∗

)
C(I + α∗σ ∗2C)((I + α(t)σ (t)2C)−1)2. (22)
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It is obvious that equations (21) and (22) are satisfied by α(t) = α(t + 1) = α∗ and σ(t) =
σ(t + 1) = σ ∗.

4. GBP for Gaussian graphical model

In this section, we summarize the theoretical structure of GBP. We explain the framework for
probabilistic models defined by the following probability density function:

p(f |g, α, β) = 1

Z(g, α, β)
exp

−1

2
β
∑
i∈�

(fi − gi)
2 − 1

2
α

∑
ij∈N

(fi − fj )
2

 , (23)

where

Z(g, α, β) ≡
∫

exp

−1

2
β
∑
i∈�

(zi − gi)
2 − 1

2
α

∑
ij∈N

(zi − zj )
2

 dz. (24)

If we set β = 0 and β = 1/σ 2, the probability density function (23) reduces to equations (2)
and (3).

We introduce the Kullback–Leibler (KL) divergence defined by

D[q‖p] ≡
∫

dz q(z) ln

(
q(z)

p(z)

)
. (25)

If we substitute equation (23) into equation (25), the KL divergence can be expressed in terms
of the average mi = ∫

ziq(z) dz, the variance Vii = ∫
(zi − mi)

2q(z) dz and the covariance
Vij = ∫

(zi − mi)(zj − mj)q(z) dz as follows:

D[q‖p] = ln(Z(g, α, β)) + F[q], (26)

where

F[q] ≡ 1

2
β
∑
i∈�

(Vii + (mi − gi)
2)

+
1

2
α

∑
ij∈N

((Vii − 2Vij + Vjj + (mi − mj)
2) +

∫
q(z) ln(q(z)) dz. (27)

In order to explain the framework of GBP, we should define some notation for clusters.
In the present paper, a set of pixels is called cluster. When a pixel i belongs to a cluster γ , we
call i an element of γ and express it in terms of the notation i ∈ γ . When all the nodes in a
cluster γ ′ belong to a cluster γ and γ is not equal to γ ′, we call γ ′ a subcluster of γ and use
the notation γ ′ ⊂ γ .

Now we specify a set of basic clusters. Every basic cluster must not be a subcluster of
another element in the set of basic clusters. We denote the set of basic clusters by B. We
consider a set C of clusters such that a cluster is in C if and only if it is a cluster in B or is the
cluster of the common nodes of two or more clusters in B.

Suppose that |γ | = n, and that the pixels γ1, γ2, . . . , γn belonging to γ are ordered so
that γ1 < γ2 < · · · < γn. Let the n-dimensional vectors f γ and zγ be defined by f γ ≡(
fγ1 , fγ2 , . . . , fγn

)T
and zγ ≡ (

zγ1 , zγ2 , . . . , zγn

)T
, respectively. We introduce the marginal

probability density function Qγ (f γ ) defined by

qγ (f γ ) ≡
∫ ∏

i∈γ

δ(fi − zi)

 q(z) dz (γ ∈ C). (28)
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For the purposes of GBP, we assume that the trial function q is restricted to the following
factorized form:

q(f) =
∏
γ∈C

Qγ (f γ )−µ(γ ), (29)

where µ(γ ) is a Möbius function defined by

µ(γ ) ≡ −1 −
∑

{γ ′|γ ′⊃γ,γ ′∈C}
µ(γ ′) (γ ∈ C) (30)

Moreover, we assume that qγ (f γ ) is the |γ |-dimensional Gaussian density given by

qγ (f γ ) = 1√
(2π)|γ | det(V γ )

exp

(
−1

2
(f γ − mγ )TV γ

−1(f γ − mγ )

)
. (31)

In the case of |γ | = n, the average vector mγ and the covariance matrix V γ are defined by

mγ =


mγ1

mγ2

...

mγn

 , V γ =


Vγ1,γ1 Vγ1,γ2 · · · Vγ1,γn

Vγ2,γ1 Vγ2,γ2 · · · Vγ2,γn

...
...

. . .
...

Vγn,γ1 Vγn,γ2 · · · Vγn,γn

 . (32)

From equations (29) and (31), the free energy (27) can be expressed in terms of the
averages mi and variances Vii for all the pixels (i ∈ �), and the covariances Vij for all the
nearest-neighbor pairs of pixels (ij ∈ N ) as follows:

F[q] = F[m,V ] ≡ 1

2
β
∑
i∈�

(Vii + (mi − gi)
2) +

1

2
α

∑
ij∈N

(Vii − 2Vij + Vjj + (mi − mj)
2)

+
∑
γ∈C

µ(γ )

(
1 +

1

2
ln((2π)|γ |det V γ )

)
. (33)

The extremum conditions ofF[m,V ] with respect to the average vector m and the covariance
matrix V are as follows:

β(mi − gi) + α
∑
j∈Ni

(mi − mj) = 0 (34)

β + 4α +
∑

{γ |γ∈C,i∈γ }
µ(γ )

(
V −1

γ

)
ii

= 0 (i ∈ �) (35)

−α +
∑

{γ |γ∈C,i∈γ,j∈γ }
µ(γ )

(
V −1

γ

)
ij

= 0 (ij ∈ N ) (36)

∑
{γ |γ∈C,i∈γ,j∈γ }

µ(γ )
(
V −1

γ

)
ij

= 0 (i, j ∈ �, ij /∈N ). (37)

For each (α, β), we can solve equations (34)–(37) numerically and obtain m and V γ (γ ∈ C).

5. Hyperparameter estimation by the EM algorithm and GBP

In this section, we apply GBP to the EM algorithm for the Gaussian graphical model when a
degraded image g is given. The explicit algorithm and some numerical experiments involving
practical images are also given.
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The analytical solution of equation (34) gives

m = h(g, α, σ ) =


h1(g, α, σ )

h2(g, α, σ )

...

h|�|(g, α, σ )

 = β(βI + αC)−1g. (38)

In GBP, the restored image f̂ from the posterior probability density function is given by
equation (17) [14].

The covariance matrix V is obtained by solving the system of equations (35)–(37)
numerically. These equations do not include the vector g and therefore the approximate
values of the covariance matrix in GBP do not depend on the vector g or the position of pixel.
We can express the variances and the covariances in the prior and the posterior probabilistic
models in terms of notation independent of pixels as

V
(0)

PR (α) ≡ 〈
Fi

2
∣∣α〉 − 〈Fi |α〉2 (i ∈ �) (39)

V
(1)

PR (α) ≡ 〈FiFj |α〉 − 〈Fi |α〉〈Fj |α〉 (ij ∈ N ) (40)

V
(0)

PO (α, σ ) ≡ 〈
Fi

2
∣∣g, α, σ

〉 − 〈Fi |g, α, σ 〉2 (i ∈ �) (41)

V
(1)

PO (α, σ ) ≡ 〈FiFj |g, α, σ 〉 − 〈Fi |g, α, σ 〉〈Fj |g, α, σ 〉 (ij ∈ N ). (42)

By calculating the expectations of both sides of equations (19) and (20) with respect to
P{G = g|α∗, σ ∗}, we obtain the following update rules for the hyperparameters α(t) and
σ(t):

2V
(0)

PR (α(t + 1)) − 2V
(1)

PR (α(t + 1)) = 2V
(0)

PO (α(t), σ (t)) − 2V
(1)

PO (α(t), σ (t))

+
1

|N |
∑
ij∈N

(hi(g, α(t), σ (t)) − hj (g, α(t), σ (t)))2, (43)

σ(t + 1)2 = V
(0)

PO (α(t), σ (t)) +
1

|�|
∑
i∈�

(hi(g, α(t), σ (t)) − gi)
2. (44)

We remark that V (0)
PR (α) and V

(1)
PR (α) are the solutions V

(0)
PR (α) = Vii (i ∈ �) and V

(1)
PR (α) = Vij

(ij ∈ N ) of equations (35)–(37) for β = 0 and that V (0)
PO (α, σ ) and V

(1)
PO (α, σ ) are the solutions

V
(0)

PO (α, σ ) = Vii (i ∈ �) and V
(1)

PO (α, σ ) = Vij (ij ∈ N ) of equations (35)–(37) for β = σ−2.
In the Bethe approximation, we set B = N and C = � ∪ B, and then the Möbius functions

are given as µ(i) = 3 (i ∈ �), µ(ij) = −1 (ij ∈ N ). In the square approximation of GBP,
we set B = {ijkl|ij, jk, kl, li ∈ N , i, j, k, l ∈ �}, C = � ∪ N ∪ B and then the Möbius
functions are given as µ(i) = −1 (i ∈ �), µ(ij) = 1 (ij ∈ N ) and µ(ijkl) = −1 (ijkl ∈ B).
If we apply the system of equations (35)–(37) to the posterior and the prior probabilistic
density functions, the deterministic equations for V

(0)
PR (α), V

(1)
PR (α), V

(0)
PO (α, σ ) and V

(1)
PO (α, σ )

are reduced to (
V

(0)
PR (α)

V
(1)

PR (α)

)
= Ψ

( (
V

(0)
PR (α)

V
(1)

PR (α)

) ∣∣∣∣∣α, 0

)
, (45)

(
V

(0)
PO (α, σ )

V
(1)

PO (α, σ )

)
= Ψ

( (
V

(0)
PO (α, σ )

V
(1)

PO (α, σ )

) ∣∣∣∣∣α, σ−2

)
, (46)
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Ψ

((
ξ

η

) ∣∣∣∣∣α, β

)
≡

(
3

4ξ
+ 1

4β + α −α

−α 3
4ξ

+ 1
4β + α

)−1 (
1
0

)
, (47)

for the Bethe approximation, and

Ψ

( (
ξ

η

) ∣∣∣∣∣α, β

)
≡

(
1 0 0 0
0 1 0 0

) (
α +

1

4
β − 1

4ξ
+

ξ

2(ξ 2 − η2)

) 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



− 1

2

(
α − η

ξ 2 − η2

)
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0




−1 
1
0
0
0

 , (48)

for the square approximation, respectively. In the case of the Bethe approximation, the
deterministic equations for V

(0)
PR (α), V

(1)
PR (α) can be reduced to(

V
(0)

PR (α)

V
(1)

PR (α)

)
= 1

8α

(
3
1

)
. (49)

The explicit procedure for the EM algorithm for GBP is as follows:

EM algorithm for GBP

Step 1: Set initial values α(0), σ (0) and set t ← 0.
Step 2: Calculate the vector h(g, α(t), σ (t)) as follows:

h(g, α(t), σ (t)) ← (I + α(t)σ (t)2C)−1g. (50)

Step 3: Iterate the following procedure until a and b converge:(
a

b

)
← Ψ

( (
a

b

) ∣∣∣∣∣α(t), σ (t)−2

)
. (51)

Step 4: Calculate σ(t + 1) and c through the following rules:

σ(t + 1) ←
(

a +
1

|�|
∑
i∈�

(hi(g, α(t), σ (t)) − gi)
2

)1/2

, (52)

c ← a − b +
1

2|N |
∑
ij∈N

(hi(g, α(t), σ (t)) − hj (g, α(t), σ (t)))2. (53)

Step 5: Determine α(t + 1) so as to satisfy(
d

d − c

)
= Ψ

( (
d

d − c

) ∣∣∣∣∣α(t + 1), 0

)
, (54)

and update t ← t + 1.
Step 6: Stop if α(t) and σ(t) have converged, and go to step 2 otherwise.

The function Ψ on the right-hand sides of equations (51) and (54) is defined by equations (47)
for LBP and by equation (48) for GBP, respectively.

In the present paper, our framework for Bayesian image restoration uses a Gaussian
graphical model and considers a continuous random variable for the intensity at each pixel in
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(a) (b) (c)

Figure 1. Image restoration by means of the Gaussian graphical model and the EM algorithm.
(a) Original image f . (b) Degraded image g (σ = 40). (c) Restored image f̂ based on generalized
belief propagation (GBP) (̂α = 0.000 713, σ̂ = 37.610).

(a) (b) (c)

Figure 2. Image restoration by means of the Gaussian graphical model and the EM algorithm.
(a) Original image f . (b) Degraded image g (σ = 40). (c) Restored image f̂ based on generalized
belief propagation (GBP) (̂α = 0.000 716, σ̂ = 39.268).

the original and the degraded images. However, in practical images in computer vision, the
intensity of light at each pixel is represented by an integer chosen from the set {0, 1, . . . , 255}.
In our numerical experiments, we apply the framework established in the previous sections to
images consisting of integers {0, 1, . . . , 255}. Instead of equation (6), we use

f̂ i ≡ arg min
n=0,1,...,255

(
n −

∫
ziP(F = z|G = g, α̂, σ̂ ) dz

)2

. (55)

In our numerical experiments, we adopt the two images in figures 1(a) and 2(a) as original
images f . Figure 1(a) shows a standard image. Figure 2(a) is an image generated by sampling
by the Markov chain Monte Carlo method from the a priori probability density function (2).
Degraded images in figures 1(a) and 2(a) are generated by corrupting the original images by
adding white Gaussian noise with mean 0 and variance 402. We apply the EM algorithms
associated with LBP and GBP to the degraded images g shown in figures 1(b) and 2(b).

For the degraded images in figures 1(b) and 2(b), the trajectories of (σ (t), α(t))

(t = 0, 1, 2, . . .) in the EM algorithms with LBP and GBP are given in figures 3 and 4,
respectively. The initial values σ(0) and α(0) in the EM algorithm were 100 and 0.000 10,
respectively. The small solid circle in both panel (a) and panel (b) is the trajectory for the exact
solution obtained from the update rules (19) and (20) for (α(t), σ (t)). The restored images
obtained by applying the EM algorithm for GBP to the degraded images g in figures 1(b) and
2(b) are shown in figures 1(c) and 2(c), respectively.
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Figure 3. Values of (σ (t), α(t)) (t = 0, 1, 2, . . .) in the EM algorithms associated with the
degraded image in figure 1(b). The initial values σ(0) and α(0) in the EM algorithm are 100 and
0.000 10, respectively. (a) The open circle is for loopy belief propagation (LBP). (b) The open
circle is for generalized belief propagation (GBP). The small solid circle in both (a) and (b) is for
the exact solution obtained by using the update rules (19) and (20) for (α(t), σ (t)).

(a) (b)

Figure 4. Values of (σ (t), α(t)) (t = 0, 1, 2, . . .) in the EM algorithms associated with the
degraded image in figure 2(b). The initial values σ(0) and α(0) are 100 and 0.000 10, respectively.
(a) The open circle is for loopy belief propagation (LBP). (b) The open circle is for generalized
belief propagation (GBP). The small solid circle in both (a) and (b) is for the exact solution obtained
by using the update rules (19) and (20) for (α(t), σ (t)).

6. Statistical trajectory of EM algorithm for GBP

In this section, we give the general procedure for calculating the statistical trajectory for the
EM algorithm in probabilistic image processing based on the Gaussian graphical model. The
statistical trajectory corresponds to the average of equations (43) and (44) with respect to
degraded images g. Now we assume that degraded images g are generated according to
P{G = g|α∗, σ ∗}.

By calculating expectations of both sides of equations (19) and (20) with respect to
P{G = g|α∗, σ ∗}, we obtain the following update rules for the hyperparameters α(t)

and σ(t):

2V
(0)

PR (α(t + 1)) − 2V
(1)

PR (α(t + 1)) = 2V
(0)

PO (α(t), σ (t)) − 2V
(1)

PO (α(t), σ (t))

+
1

|N |
∑
ij∈N

∫
(hi(g, α(t), σ (t)) − hj (g, α(t), σ (t)))2P{G = g|α∗, σ ∗} dg,

(56)
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σ(t + 1)2 = V
(0)

PO (α(t), σ (t))

+
1

|�|
∑
i∈�

∫
(hi(g, α(t), σ (t)) − gi)

2P{G = g|α∗, σ ∗} dg. (57)

By substituting equation (17) into equations (56) and (57), we obtain

V
(0)

PR (α(t + 1)) − V
(1)

PR (α(t + 1))

= V
(0)

PO (α(t), σ (t)) − V
(1)

PO (α(t), σ (t)) +
1

|N | Tr
I + α∗σ ∗2C

α∗(I + ασ 2C)2
, (58)

σ(t + 1)2 = V
(0)

PO (α(t), σ (t)) +
1

|�| Tr
α2(I + α∗σ∗2C)

α∗(I + ασ 2C)2
. (59)

We remark that V (0)
PR (α) and V

(1)
PR (α) are the solutions V

(0)
PR (α) = Vii (i ∈ �) and V

(1)
PR (α) = Vij

(ij ∈ N ) of equations (35)–(37) for β = 0 and that V (0)
PO (α, σ ) and V

(1)
PO (α, σ ) are the solutions

V
(0)

PO (α, σ ) = Vii (i ∈ �) and V
(1)

PO (α, σ ) = Vij (ij ∈ N ) of equations (35)–(37) for β = σ−2.
From the deterministic equations (45)–(48) for V

(0)
PR (α), V

(0)
PO (α, σ ), V

(1)
PR (α) and

V
(1)

PO (α, σ ), and the update rule of the EM algorithm (58) and (59), the procedure for estimating
the statistical trajectory in the EM algorithm in the GBP is summarized as follows.

Statistical trajectory estimation algorithm of EM algorithm for GBP

Step 1: Set initial values α(0), σ (0) and set t ← 0.
Step 2: Iterate the following procedure until a and b converge:(

a

b

)
← Ψ

( (
a

b

) ∣∣∣∣∣α(t), σ (t)−2

)
. (60)

Step 3: Calculate σ(t + 1) and c through the following rules:

σ(t + 1) ←
(

a +
1

|�| Tr
α(t)2(I + α∗σ ∗2C)

α∗(I + α(t)σ (t)2C)2

)1/2

, (61)

c ← a − b +
1

2|N | Tr
I + α∗σ ∗2C

α∗(I + α(t)σ (t)2C)2
. (62)

Step 4: Determine α(t + 1) so as to satisfy(
d

d − c

)
= Ψ

( (
d

d − c

) ∣∣∣∣∣α(t + 1), 0

)
, (63)

and update t ← t + 1.
Step 5: Stop if α(t) and σ(t) have converged, and go to step 2 otherwise.

The function Ψ on the right-hand sides of equations (60) and (61) is defined by
equations (47) for LBP and by equation (48) for GBP, respectively.

We give the statistical trajectories in the EM algorithms for LBP, GBP and the exact
solution in table 1. The statistical trajectories for LBP and GBP are obtained by the procedure
described above in this section, while that for the exact solution is calculated by means
of the update rules (15) and (16). The true values (σ ∗, α∗) for hyperparameters σ and α

are (40, 0.000 70). In figures 5 and 6, the initial values (σ (0), α(0)) in the EM algorithm
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(a) (b)

Figure 5. Statistical averages of (σ (t), α(t)) (t = 0, 1, 2, . . .) in the EM algorithms. The true
values σ ∗ and α∗ for hyperparameters σ and α are 40 and 0.000 70, respectively. The initial values
σ(0) and α(0) in the EM algorithm are 100 and 0.000 10, respectively. (a) The open circle is for
loopy belief propagation (LBP). (b) The open circle is for generalized belief propagation (GBP).
The small solid circle in both (a) and (b) is for the exact solution.

Table 1. Statistical averages of (σ (t), α(t)) (t = 0, 1, 2, . . .) in the EM algorithms for
the exact solution, loopy belief propagation (LBP) and generalized belief propagation (GBP).
The true values σ ∗ and α∗ for hyperparameters σ and α are 40 and 0.000 70, respectively.
(a) σ(0) = 100, α(0) = 0.000 10. (b) σ(0) = 100, α(0) = 0.000 90.

Exact LBP GBP

t α(t) σ (t) α(t) σ (t) α(t) σ (t)

(a)
0 0.000 1000 100.00 0.000 1000 100.00 0.000 1000 100.00
1 0.000 1274 60.88 0.000 1260 60.18 0.000 1274 60.87
2 0.000 1748 47.31 0.000 1729 46.90 0.000 1748 47.31
5 0.000 3008 35.64 0.000 2961 35.39 0.000 3007 35.64

10 0.000 3749 35.24 0.000 3641 34.89 0.000 3749 35.24
20 0.000 4646 37.23 0.000 4364 36.61 0.000 4645 37.23
50 0.000 6213 39.31 0.000 5357 38.20 0.000 6207 39.30

100 0.000 6885 39.91 0.000 5620 38.52 0.000 6870 39.90
200 0.000 6998 40.00 0.000 5640 38.54 0.000 6979 39.98
500 0.000 7000 40.00 0.000 5640 38.54 0.000 6980 39.98

(b)
0 0.000 9000 100.00 0.000 9000 100.00 0.000 9000 100.00
1 0.000 9289 49.69 0.000 9190 48.62 0.000 9280 49.59
2 0.000 9520 43.59 0.000 9286 42.99 0.000 9506 43.55
5 0.000 9376 41.46 0.000 8833 40.94 0.000 9356 41.44

10 0.000 8941 41.20 0.000 8044 40.48 0.000 8917 41.19
20 0.000 8295 40.86 0.000 7013 39.81 0.000 8267 40.84
50 0.000 7393 40.29 0.000 5910 38.84 0.000 7367 40.27

100 0.000 7056 40.04 0.000 5659 38.56 0.000 7035 40.03
200 0.000 7001 40.00 0.000 5640 38.54 0.000 6983 39.98
500 0.000 7000 40.00 0.000 5640 38.54 0.000 6983 39.98

are (100, 0.000 10) and (100, 0.000 90), respectively. The statistical trajectories in the EM
algorithms for LBP and GBP in table 1 are shown as the open circles in figures 5 and 6,
whereas the statistical trajectory for the exact solution in table 1 is given by the small solid
circles.

In table 1 and figures 5 and 6, we see that the trajectories for the approximate EM
algorithms for both LBP and GBP are very close to that for the exact EM algorithm. However,
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(a) (b)

Figure 6. Statistical averages of (σ (t), α(t)) (t = 0, 1, 2, . . .) in the EM algorithms. The true
values σ ∗ and α∗ for hyperparameters σ and α are 40 and 0.000 70, respectively. The initial values
σ(0) and α(0) in the EM algorithm are 100 and 0.000 90, respectively. (a) The open circle is for
loopy belief propagation (LBP). (b) The open circle is for generalized belief propagation (GBP).
The small solid circle in both (a) and (b) is for the exact solution.

the termination points for (α(t), σ (t)) for both of the approximate EM algorithms are different
from the true point (α∗, σ ∗) in the hyperparameter space, whereas the exact EM algorithm
can reach the true point. Moreover, we see that the termination point of the approximate EM
algorithm of GBP is closer to the true point than is the termination point corresponding to LBP
in table 1 and then we conclude that GBP gives us better estimation of the hyperparameter by
means of the EM algorithm than the does LBP based on the analysis of the statistical trajectory
as well as on some numerical experiments described in figures 1–4 in section 5.

7. Concluding remarks

In the present paper, we have extended the EM algorithm for conventional LBP to that for
GBP and have described some numerical experiments. The prior probability model has been
assumed to correspond to a Gaussian graphical model. Additive white Gaussian noise has
been adopted as the degradation process. We have derived recursion formulas for calculating
the averages of the trajectories in the EM algorithms for GBP with respect to degraded images
generated from the assumed prior probabilities and degradation process. Our main result in
the present paper was the derivation of the statistical average of the trajectory as recursion
formulas analytically. The results have been compared with the average for the exact solutions
obtained by using the multi-dimensional Gaussian integral formula.

The present results have shown that the analytical results of the EM algorithms in
section 6 are consistent with the numerical experiments in section 5 for GBP as well as
for the exact solution. Moreover, we see that results of GBP and the exact solution are very
close to each other for several initial steps for the analytical results as well as for our numerical
experiments for degraded images generated according to the assumed prior probability density
function and degradation process.

The approximate EM algorithm by means of GBP cannot reach the true point of
hyperparameter space (α∗, σ ∗). The terminated point of the EM algorithm is closer to the true
point than those of LBP. The similar situations are found also in some numerical experiments
in section 5. Thus we see that the hyperparameter estimation of GBP is better than LBP from
the analysis of the statistical trajectory. We conclude that LBP and GBP differ in terms of
the accuracy of estimation of the hyperparameter. On the other hand, in terms of speed, the
difference between them is not substantial. The computational time needed for convergence
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of the approximate EM algorithm by means of GBP is usually at most double that for version
based on LBP in the image processing context.

The EM algorithm for estimating the hyperparameters originally included the calculation
of statistical quantities for posterior and prior probabilities. In the present paper, we treat
only Gaussian graphical models and expressions for the appropriate statistical quantities can
be derived analytically. Hence we have constructed the exact EM algorithm and can analyze
the accuracy of the approximate EM algorithms of LBP and GBP. However, posterior and
prior probabilistic models used in practical image processing are generally intractable and it is
usually hard to calculate the corresponding statistical quantities exactly. In such cases, we do
have to employ LBP or GBP as approximate algorithms for calculating statistical quantities
for intractable probabilistic models.

Moreover, when we apply GBP and LBP to intractable posterior and prior probabilistic
models, we have to consider trajectories and convergence not only for the approximate EM
algorithm but also for GBP and LBP themselves. In our approximate EM algorithms, GBP
and LBP correspond to inner loops and the EM procedure corresponds to an outer loop. Thus
we have to consider the convergence both of LBP or GBP and of the EM procedure. It is
one of our future research problems to improve the iterative procedures of the inner and outer
loops in approximate EM algorithms.

We have investigated the analytical estimation of the statistical averages of the trajectories
in the approximate and the exact EM algorithms only for the square lattice because of our
particular interest in probabilistic image processing. Moreover, we treated only the case in
which a real value in the range (−∞, +∞) is taken as the intensity at each pixel. Practical
digital images often take integer numbers as the intensity. For some such cases, Inoue and
Tanaka have analyzed the statistical average of trajectories in the EM algorithm on complete
graphs by using the replica method [19, 20]. We expect that it is possible to carry out similar
analysis to that in [19, 20] for probabilistic models on sparse graphs with a finite coordination
number. This is left for future research.

Belief propagation has been applied to many problems in computer science. For several
problems in computer science, we have to consider probabilistic models on other types of
graph. In particular, some researchers are interested in information processing on complex
networks [27–29]. It is of interest to do similar analysis to that in the present paper in
the context of Gaussian graphical models on complex networks. This also is left for future
research.
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